Dobiński-type relations and the log-normal distribution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 36 L273
(http://iopscience.iop.org/0305-4470/36/18/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:39

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Dobiński-type relations and the log-normal distribution

P Blasiak ${ }^{1,2}$, K A Penson 1 and A I Solomon ${ }^{1}$
${ }^{1}$ Université Pierre et Marie Curie, Laboratoire de Physique Théorique des Liquides, CNRS UMR 7600, Tour 16, 5 ième étage, 4, place Jussieu, F 75252 Paris Cedex 05, France ${ }^{2}$ H Niewodniczański Institute of Nuclear Physics, ul Eliasza Radzikowskiego 152, PL 31-342 Kraków, Poland
E-mail: blasiak@lptl.jussieu.fr, penson@lptl.jussieu.fr and a.i.solomon@open.ac.uk

Received 11 March 2003
Published 23 April 2003
Online at stacks.iop.org/JPhysA/36/L273

Abstract

We consider sequences of generalized Bell numbers $B(n), n=1,2, \ldots$, which can be represented by Dobiński-type summation formulae, i.e. $B(n)=$ $\frac{1}{C} \sum_{k=0}^{\infty} \frac{[P(k)]^{n}}{D(k)}$, with $P(k)$ a polynomial, $D(k)$ a function of k and $C=$ const. They include the standard Bell numbers $(P(k)=k, D(k)=k!, C=e)$, their generalizations $B_{r, r}(n), r=2,3, \ldots$, appearing in the normal ordering of powers of boson monomials $\left(P(k)=\frac{(k+r)!}{k!}, D(k)=k!, C=e\right)$, variants of 'ordered' Bell numbers $B_{o}^{(p)}(n)\left(P(k)=k, D(k)=\left(\frac{p+1}{p}\right)^{k}, C=1+p, p=\right.$ $1,2 \ldots)$, etc. We demonstrate that for α, β, γ, t positive integers $(\alpha, t \neq 0)$, $\left[B\left(\alpha n^{2}+\beta n+\gamma\right)\right]^{t}$ is the nth moment of a positive function on $(0, \infty)$ which is a weighted infinite sum of log-normal distributions.

PACS numbers: $02.10 .0 x, 05.30 . J p$

In a recent investigation [1] we analysed sequences of integers which appear in the process of normal ordering of powers of monomials of boson creation a^{\dagger} and annihilation a operators, satisfying the commutation rule $\left[a, a^{\dagger}\right]=1$. For r, s integers such that $r \geqslant s$, we define the generalized Stirling numbers of the second kind $S_{r, s}(n, k)$ as

$$
\begin{equation*}
\left[\left(a^{\dagger}\right)^{r} a^{s}\right]^{n}=\left(a^{\dagger}\right)^{n(r-s)} \sum_{k=s}^{n s} S_{r, s}(n, k)\left(a^{\dagger}\right)^{k} a^{k} \tag{1}
\end{equation*}
$$

and the corresponding Bell numbers $B_{r, s}(n)$ as

$$
\begin{equation*}
B_{r, s}(n)=\sum_{k=s}^{n s} S_{r, s}(n, k) \tag{2}
\end{equation*}
$$

In [1] explicit and exact expressions for $S_{r, s}(n, k)$ and $B_{r, s}(n)$ were found. In a parallel study [2] it was demonstrated that $B_{r, s}(n)$ can be considered as the nth moment of a probability
distribution on the positive half-axis. In addition, for every pair (r, s) the corresponding distribution can be explicitly written down. These distributions constitute the solutions of a family of Stieltjes moment problems, with $B_{r, s}(n)$ as moments. Of particular interest to us are the sequences with $r=s$, for which the following representation as an infinite series has been obtained:

$$
\begin{align*}
B_{r, r}(n) & =\frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!}\left[\frac{(k+r)!}{k!}\right]^{n-1} \tag{3}\\
& =\frac{1}{e} \sum_{k=0}^{\infty} \frac{[k(k+1) \ldots(k+r-1)]^{n}}{(k+r-1)!} \quad n>0 . \tag{4}
\end{align*}
$$

Equations (3) and (4) are generalizations of the celebrated Dobiński formula ($r=1$) [3]:

$$
\begin{equation*}
B_{1,1}(n)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} \quad n>0 \tag{5}
\end{equation*}
$$

which expresses the conventional Bell numbers $B_{1,1}(n)$ as a rapidly convergent series. Its simplicity has inspired combinatorialists such as Rota [4] and Wilf [5]. Equation (5) has far-reaching implications in the theory of stochastic processes [6-8].

The probability distribution whose nth moment is $B_{r, r}(n)$ is an infinite ensemble of weighted Dirac delta functions located at a specific set of integers (a so-called Dirac comb):
$B_{r, r}(n)=\int_{0}^{\infty} x^{n}\left\{\frac{1}{e} \sum_{k=0}^{\infty} \frac{\delta(x-k(k+1) \ldots(k+r-1))}{(k+r-1)!}\right\} \mathrm{d} x \quad n>0$.
For $r=1$, the discrete distribution of equation (6) is the weight function for the orthogonality relation for Charlier polynomials [9]. In contrast we emphasize that for $r \neq s$ the $B_{r, s}(n)$ are moments of continuous distributions [2].

In this letter we wish to point out an intimate relation between the formulae of equations (3)-(5) and the log-normal distribution [10, 11]:

$$
\begin{equation*}
P_{\sigma, \mu}(x)=\frac{1}{\sqrt{2 \pi} \sigma x} \mathrm{e}^{-\frac{(\ln (x)-\mu)^{2}}{2 \sigma^{2}}} \quad x \geqslant 0 \quad \sigma, \mu>0 \tag{7}
\end{equation*}
$$

First we quote the standard expression for its nth moment:

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} x^{n} P_{\sigma, \mu}(x) \mathrm{d} x=\mathrm{e}^{n\left(\mu+n \frac{\sigma^{2}}{2}\right)} \quad n \geqslant 0 \tag{8}
\end{equation*}
$$

which can be reparametrized for $k>1$ as

$$
\begin{equation*}
M_{n}=k^{\alpha n^{2}+\beta n} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
\mu & =\beta \ln (k) \tag{10}\\
\sigma & =\sqrt{2 \alpha \ln (k)}>0 . \tag{11}
\end{align*}
$$

Given three integers α, β, γ (where $\alpha>0$), we wish to find a weight function $W_{1,1}(\alpha, \beta, \gamma ; x)>0$ such that

$$
\begin{equation*}
B_{1,1}\left(\alpha n^{2}+\beta n+\gamma\right)=\int_{0}^{\infty} x^{n} W_{1,1}(\alpha, \beta, \gamma ; x) \mathrm{d} x \tag{12}
\end{equation*}
$$

Equations (5), (7) and (9) provide an immediate solution:

$$
\begin{equation*}
W_{1,1}(\alpha, \beta, \gamma ; x)=\frac{1}{e}\left[\delta(x-1)+\sum_{k=2}^{\infty} \frac{k^{\gamma} \exp \left(-\frac{(\ln (x)-\beta \ln (k))^{2}}{4 \alpha \ln (k)}\right)}{2 x k!\sqrt{\pi \alpha \ln (k)}}\right] \tag{13}
\end{equation*}
$$

which is an infinite sum of weighted log-normal distributions supplemented by a single Dirac peak of weight e^{-1} located at $x=1$. Thus it is a superposition of discrete and continuous distributions. Virtually the same approach can be adopted for the sequences $B_{r, r}(n), r>1$. In this case the $k=1$ term in the numerator of equation (3) is larger than one and so there will be no Dirac peak in the formula. Then the function $W_{r, r}(\alpha, \beta, \gamma ; x)>0$ defined by $(\alpha, \beta, \gamma$ integers, $\alpha, \gamma>0$)

$$
\begin{equation*}
B_{r, r}\left(\alpha n^{2}+\beta n+\gamma\right)=\int_{0}^{\infty} x^{n} W_{r, r}(\alpha, \beta, \gamma ; x) \mathrm{d} x \tag{14}
\end{equation*}
$$

is a purely continuous probability distribution given again by an infinite sum of weighted log-normal distributions:

$$
\begin{equation*}
W_{r, r}(\alpha, \beta, \gamma ; x)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{\left[\frac{(k+r)!}{k!}\right]^{\gamma-1} \exp \left(-\frac{\left[\ln (x)-\beta \ln \left(\frac{(k+r)!}{k!}\right)\right]^{2}}{4 \alpha \ln \left[\frac{(k+r)!}{k!}\right]}\right)}{2 x k!\sqrt{\pi \alpha \ln \left[\frac{(k+r)!}{k!}\right]}} . \tag{15}
\end{equation*}
$$

The solutions of the moment problems of equations (9), (12) and (14) are not unique. More general solutions may be obtained by the method of the inverse Mellin transform, see [12].

Several other types of combinatorial sequences have properties exemplified by equations (12) and (14). We quote, for example, the so-called 'ordered' Bell numbers $B_{o}(n)$ defined as [5]

$$
\begin{equation*}
B_{o}(n)=\sum_{k=1}^{n} S(n, k) k! \tag{16}
\end{equation*}
$$

where $S(n, k)$ are the Stirling numbers of the second kind, $S_{1,1}(n, k)$ in our notation. These ordered Bell numbers satisfy the following Dobiński-type relation:

$$
\begin{equation*}
B_{o}(n)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{k^{n}}{2^{k}} \tag{17}
\end{equation*}
$$

from which a formula analogous to equation (14) readily follows. A more general identity of type (17) is [13]
$B_{o}^{(p)}(n)=\frac{1}{p+1} \sum_{k=1}^{\infty} k^{n}\left(\frac{p}{p+1}\right)^{k}=\sum_{k=0}^{n} S(n, k) k!p^{k} \quad p=2,3, \ldots$.
We will not discuss other types of sequences but rather observe that the relations of equations (3), (4), (5), (17), (18) naturally imply that any power of these numbers also satisfies a Dobiński-type relation. As an example we give explicitly the simplest case of equation (5). For integer $t>0$:

$$
\begin{equation*}
\left[B_{1,1}(n)\right]^{t}=\frac{1}{e^{t}} \sum_{k_{1}, k_{2}, \ldots, k_{t}=0}^{\infty} \frac{\left(k_{1} k_{2} \ldots k_{t}\right)^{n}}{k_{1}!k_{2}!\ldots k_{t}!} \tag{19}
\end{equation*}
$$

with correspondingly more complicated formulae of a similar nature for powers of $B_{r, r}(n), B_{o}(n)$ and $B_{o}^{(p)}(n)$. For combinatorial applications of equation (19), see [14-16].

Figure 1. Weight function $W_{1,1}(1,1,1 ; x)$, see equation (13).

Figure 2. Weight functions $W_{r, r}(1,1,1 ; x)$ for $r=2,3,4$.

We conclude that for any sequences of the type $B(n)$ specified above $\left[B\left(\alpha n^{2}+\beta n+\gamma\right)\right]^{t}$ is always given as an nth moment of a positive function on $(0, \infty)$ expressible by sums of weighted log-normal distributions. We illustrate such a function for $B_{1,1}(n)$ in figure 1 . The application to $B_{r, r}(n)$ for $r=2,3,4$ is presented in figure 2. The area under every curve is equal to 1 on extrapolating to large x (not displayed). In both examples we have chosen $\alpha=\beta=\gamma=1$. Observe the exceedingly slow decrease of these probabilities for $x \rightarrow \infty$. This is confirmed by the fact that the moment sequences $\left[B\left(\alpha n^{2}+\beta n+\gamma\right)\right]^{t}$ are extremely rapidly increasing. In the simplest case $\alpha=\beta=\gamma=t=1$ we find $B_{1,1}\left(n^{2}+n+1\right)=1,5,877,27644437,474869816156751$ for $n=0, \ldots, 4$.

The circumstance that we can determine the positive solutions of the Stieltjes moment problem with both $B(n)$ (discrete distribution) and $\left[B\left(\alpha n^{2}+\beta n+\gamma\right)\right]^{t}$ (continuous distribution) is a very specific consequence of the existence of Dobiński-type expansions. To our knowledge it has no equivalent in standard solutions of the moment problem. For instance, if the moments
are n ! the solution e^{-x} does not give any indication as to how one might obtain the solution for the moments equal to $\left(n^{2}\right)$!.

The strict positivity of $W_{r, r}(\alpha, \beta, \gamma ; x)$, for $r=1,2, \ldots$, suggests their use in the construction of coherent states, which satisfy the resolution of identity property [17-20]. This can be done by the substitution $n!\rightarrow B_{r, r}\left(\alpha n^{2}+\beta n+\gamma\right)$ in the definition of standard coherent states. More precisely, for a complete and orthonormal set of wavefunctions $|n\rangle$ such that $\left\langle n \mid n^{\prime}\right\rangle=\delta_{n, n^{\prime}}$ and complex z we define the normalized coherent state as

$$
\begin{equation*}
|z ; \alpha, \beta, \gamma\rangle=\frac{1}{\mathcal{N}^{1 / 2}\left(\alpha, \beta, \gamma ;|z|^{2}\right)} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{B_{r, r}\left(\alpha n^{2}+\beta n+\gamma\right)}}|n\rangle \tag{20}
\end{equation*}
$$

with the normalization

$$
\begin{equation*}
\mathcal{N}(\alpha, \beta, \gamma ; x)=\sum_{n=0}^{\infty} \frac{x^{n}}{B_{r, r}\left(\alpha n^{2}+\beta n+\gamma\right)} \tag{21}
\end{equation*}
$$

which is a rapidly converging function of x for $0 \leqslant x<\infty, x=|z|^{2}$. Then, using the procedure of [18] we can demonstrate that the states of equation (20) along with equation (14) automatically satisfy the resolution of unity

$$
\begin{equation*}
\iint_{\mathbb{C}} \mathrm{d}^{2} z|z ; \alpha, \beta, \gamma\rangle \tilde{W}_{r, r}\left(\alpha, \beta, \gamma ;|z|^{2}\right)\langle z ; \alpha, \beta, \gamma|=I=\sum_{n=0}^{\infty}|n\rangle\langle n| \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{r, r}\left(\alpha, \beta, \gamma ;|z|^{2}\right)=\pi \frac{\tilde{W}_{r, r}\left(\alpha, \beta, \gamma ;|z|^{2}\right)}{\mathcal{N}\left(\alpha, \beta, \gamma ;|z|^{2}\right)} \tag{23}
\end{equation*}
$$

We are currently investigating the quantum-optical properties of states defined in equation (20).

We close by quoting from [7] that, 'the idea of representing the combinatorially defined numbers by an infinite sum or an integral, typically with a probabilistic interpretation, has proved to be a very fruitful one'. In our particular case it has allowed us to reveal quite an unexpected relation between the Dobiński-type summation relations, which by themselves are reflections of boson statistics, and the log-normal distribution.

Acknowledgments

We thank D Barsky, G Duchamp, L Haddad, A Horzela and M Yor for numerous fruitful discussions. N J A Sloane's Encyclopaedia of Integer Sequences (http://www.research. att.com/ \sim njas/sequences) was an essential help in analysing the properties of sequences we have encountered in this work.

References

[1] Blasiak P, Penson K A and Solomon A I 2003 The general boson normal ordering problem Phys. Lett. A 309 198
[2] Penson K A and Solomon A I 2002 Coherent state measures and the extended Dobiński relations Preprint quant-ph/0211061
[3] Comtet L 1974 Advanced Combinatorics (Dordrecht: Reidel)
[4] Rota G-C 1964 The number of partitions of the set Am. Math. Mon. 71498
[5] Wilf H S 1994 Generatingfunctionology (New York: Academic)
[6] Constantine G M and Savits T H 1994 A stochastic process interpretation of partition identities SIAM J. Discrete Math. 7194
[7] Pitman J 1997 Some probabilistic aspects of set partitions Am. Math. Mon. 104201
[8] Constantine G M 1999 Identities over set partitions Discrete Math. 204155
[9] Koekoek R and Swarttouv R F 1998 The Askey scheme of hypergeometric polynomials and its q-analogue Department of Technical Mathematics and Informatics Report No 98-17 (Delft University of Technology)
[10] Crow E L and Shimizu K (eds) 1988 Log-Normal Distributions, Theory and Applications (New York: Dekker)
[11] Bertoin J, Biane P and Yor M 2003 Poissonian exponential functionals, q-series, q-integrals and the moment problem for log-normal distributions Proc. Rencontre d'Ascona, Mai 2002 eds F Russo and M Dozzi (Basel: Birkhauser)
[12] Sixdeniers J-M 2001 Constructions de nouveaux états cohérents ă l'aide de solutions des problèmes des moments PhD Thesis (Paris: Univ. Pierre et Marie Curie)
Penson K A and Sixdeniers J-M unpublished
[13] Weisstein E W World of Mathematics entry: Stirling numbers of the second kind webpage http://mathworld. wolfram.com/
[14] Pittel B 2000 Where the typical set partitions meet and join Electron. J. Combin. 7 R5
[15] Canfield E R 2001 Meet and join within the lattice of set partitions Electron. J. Combin. 8 R15
[16] Bender C M, Brody D C and Meister B K 1999 Quantum field theory of partitions J. Math. Phys. 403239
[17] Sixdeniers J-M, Penson K A and Solomon A I 1999 Mittag-Leffler coherent states J. Phys. A: Math. Gen. 32 7543
[18] Klauder J R, Penson K A and Sixdeniers J-M 2001 Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems Phys. Rev. A 64013817
[19] Quesne C 2001 Generalized coherent states associated with the C_{λ}-extended oscillator Ann. Phys., NY 293147
[20] Quesne C 2002 New q-deformed coherent states with an explicitly known resolution of unity J. Phys A: Math. Gen. 359213

